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1 Introduction

Because it is impossible to generate an infinite grids of atmosphere, I have decided to
develop an interpolation program to quickly generate intermediate models from an initial
grid.

This program interpolates the thermal structure, the electronic pressure, the gas pressure,
the opacity and the microturbulence velocity (4 optical depth in case of spherical geometry
models) as a function of effective temperature, gravity and metallicity (See fig 1).

Listing 1: Representation of the interpolation of a model atmosphere(@) among a cubic
grid of input models.

~

| > logg
|/ |/
f____ ./
/

/
Teff

KX K K K K K XK X X X X X ¥ ¥
O S R R SR I S S S SR SR S

This work has been developed in July 2003 and some later improvements have been added
since (for detail updates, see the routine interpol_modeles.f).

2 Warnings and limitations

This code has been tested and calibrated with the MARCS model atmosphere grid calcu-
lated by B. Plez for the purpose of the First Star program.
This code is currently valid within the following limits:

e 3800 < T,rp < 7000
e 0.0<logg <5
e 0.0<z< —4.0

e standard solar scale composition for « elements is assumed to follow the average
Galactic trend.



However, be aware the program can run outside these conditions and no warning is dis-
played.

3 Installation and execution

3.1 Requirements

e Fortran 90 or 95 compiler. The current version as been successfully tested with g95,
gfortran and ifc/ifort (intel fortran compiler).

SuperMongo

ghostview or any ps image viewer

interpol_modeles.f Fortran routine

interpol.com shell script routine

3.2 Imstallation

Compile interpol_modeles.f with Fortran 90 or 95 (rmk: a lots of features are not supported
by Fortran77) (e.g. >f95 interpol modeles.f -0 interpol modeles).

Edit interpol.com shell script (e.g. >vi interpol.com) and set the correct path of the Fortran
executable.

3.3 Execution

Basically, the shell script interpol.com is an all-in-one manner to set up the variables and
the file directories, to call and run the fortran executable, to plot and display the graph. It
is mot an input file!

Edit interpol.com shell script (e.g. >vi interpol.com)

Set the 8 input models with their path (WARNING: respect strictly the order of the models
as specified in the script). Entering several times identical models is the way to interpolate
2 or less stellar parameters.

Set the required interpolation values.

Execute the shell script (e.g. >./interpol.com). The correct output should be something
like this:

sokokok kot ok ook ok ok ko ok sk skok sk skok ok sk ok sk ok ok

* begining of interpolation *
okt oRk Rk kKRR kR ok

Interpolation between :
this model is PLANE PARALLEL
model 1 Teff= 5500. logg= 4.00 z= -2.00



this model is PLANE PARALLEL

model 2 Teff= 5500. logg= 4.00 z= 0.00

this model is PLANE PARALLEL

model 3 Teff= 5500. logg= 4.50 z= -2.00

this model is PLANE PARALLEL

model 4 Teff= 5500. logg= 4.50 z= 0.00

this model is PLANE PARALLEL

model 5 Teff= 6000. logg= 4.00 z= -2.00

this model is PLANE PARALLEL

model 6 Teff= 6000. logg= 4.00 z= 0.00

this model is PLANE PARALLEL

model 7 Teff= 6000. logg= 4.50 z— -2.00

this model is PLANE PARALLEL

model 8 Teff= 6000. logg= 4.50 z= 0.00
Interpolation point : Teff= 5777. logg= 4.44 z= 0.00
resample models on common depth basis: tauRoss
optimized interpolation applied for standard composition models
now calculate rhox

now calculate error

estimated max error on T = 0.4 %

estimated max error on Pe = 5.0 %

estimated max error on Pg = 2.0 %

estimated max error on kappa = 6.0 %

now write result

plan parallel models

this model is PLANE PARALLEL

interpolation done

control plot loading...

3.4 Input and output files

The input model format is compatible with the Uppsala grid (http://marcs.astro.uu.se/)
or with the binary MARCS format. You have to specify it in the shell script (variable
marcs_ binary).

There are 2 output models with distinct formats. You can set as desired their name in
the shell script. The first is compatible with turbospectrum/babsma (log(7x,,,), T, log(Pe),
log(Pg), &, geometrical depth, 10g(TRosseland) and the second presents data closer to AT-
LAS or MOOG needs (#layer, log(Ty,,,), T, log(Pe), log(Pg), rhox), with in both cases
Aref displayed in the header.

The 3" output file (interpol_ check.ps) is a plot generated by the program and meant to



check “by eye” the consistency of the calculation (e.g. the interpolated model (green) should
fall somewhere among the input models, see for example figure 1). I strongly advise not
to remove the automatic display of this plot. An optional test model can be set. In this
case, the model as well as the relative difference with the interpolated model is shown on
the plot (black lines).

3.5 Troubleshooting

e check your model and/or executable path

e check that all your input models are: 1) in an adapted format 2) compatible in terms
of geometry and lambda reference.

e make sure that your Fortran is endian reading compatible with the binary model.

e make sure that both shell script interpol.com and fortran executable interpol _modeles
are executable (>chmod +x interpol.com interpol modeles).

If these advises do not help you to fix your problem, send me the displayed error message
as well as your shell script (.com file). (masseron@astronomy.ohio-state.edu)

4 Program details and method justification

Before interpolating the model, the program checks if the models are all in the same geom-
etry (plan parallel or spherical). In case the test fails, the program stops.

It also checks the number of layers of each input models and the optical depth reference
wavelength. If there is a different optical depth reference wavelength, then the program
stops. If the number of layers differs from a model to each other, the models are automat-
ically resampled to a common depth basis.

4.1 Resampling of input models

The input models are first truncated so that their 7 scale overlap. I choose cubic spline
resampling of the atmosphere structure because the atmosphere structure variables behave
quite smoothly with depth. Tresseiana 18 the default optical depth basis use for resampling
(since the MARCS code use it as well for model computation). It is however possible to
change it to another optical depth scale (see subroutine resample in main program). The
chosen optical depth scale will also become the base for the interpolation. The default
number of layer used is the one from the first input file.



4.2 Interpolation of the atmosphere structure

Listing 2: Interpolation scheme of the atmosphere structure
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Then, the thermal structure is interpolated, each layer successively and weighted between

the upper and the lower effective temperature values TTS}‘;’ (7:) and Tins (1) (see scheme
e eff
2). We can express the resulting value T* at the depth 7; as following:

T*(Ti) = TT(Z}L}C (Tz) + $(TT;}‘;’(72') — TT(Z?}C(TZ))

with z: '
(Te*ff - Tojf > e

r=|——0

Sup inf

Terr = Tefs
and T}, as the desired effective temperature, T;?]]: and T;}‘f as the effective temperatures
of the input models and « as a free parameter. The calibration of this free parameter is
described in the next section. However, you might prefer simple linear interpolation. In
this case just set the variable optimize in the Fortran routine to “.false.” and « will be set

to 0.



The program proceeds identically for the computation of the logarithm of electronic pres-
sure (log(Pe)), the logarithm of the gas pressure(log(Pg)), the logarithm of the Rosseland
opacity (log(k)), the microturbulence velocity (§;) (and the geometrical depth for spherical
geometry models) as a function of effective temperature, gravity and metallicity.

4.3 Calibration

The values for « a generally low, indicating that the atmosphere structure behaves almost
linearly with stellar parameters (as illustrated in figures 2 to 13).

The calibration of « has been optimized for depths where most lines forms, this means
for —4 < TRess < 0. Table 1 gives the adopted value for o and the resulting relationship
between stellar parameter and structure is displayed the right panels of figures 2, 3, 4, 5,
6,7,8,9,10, 11, 12 and 13.

parameter /structure ‘ T ‘ logPe ‘ logPg ‘ K ‘ & ‘ geom depth
Tegt 0.15 0.3 -0.4 -0.15 0 0
log g 0.3 0.05 0.06 -0.12 0 0
Tefr 2.0 Tefi 2. Test \4 Ter \3.5
z 1 — (555) 1—(3565)%° | 1= (zi55)" | 1— (5355) 0 0

Table 1: Adopted values for a. Though « values are generally close to 0, interpolation over
metallicity is effective temperature dependent (linear at ~ 4000K et quadratic at 6000K).

Table 1 illustrates the fact that the relationship between stellar parameter and atmo-
sphere structure are not completely independent from each other. This strongly suggests
that it is almost impossible to ensure a simple relationship between models in more than
one dimension at the same time. That’s why the input models MUST form a "cube" in the
stellar parameter space {Teff,logg,z}). By consequence, the program requires 2" input mod-
els, where n is the number of stellar parameters describing the model grid (in the present
case T, logg and [Fe/H]|, making a total of model of 8). Nevertheless, if the interpolation
is needed for only 2 stellar parameters or less, several identical models can be entered.

4.4 Error estimates

Maximum errors expected on the atmosphere structure interpolation and displayed by the
program have been calculated according to the following formula:

mazx error(S) = errorr,,,(S) + errorieg ¢(S) + error,(S)

ff(

where S is the structure (7, Pe, Pg or k) and each parameter error expressed as:

mzn(Pup — Px, P x _Plow) % Pup — BPlow
Py — Pow parameterstep

errorp(S) = Ep(S) x



The values for Ep(S) are mentioned in table 2 and are read from lower right panels of
figures 2 to 13.

Note there is not a defined dependence on 7 since this is one of the constrain to set the free
parameter a.

parameter step/struct ‘ T ‘ Pe ‘ Pg ‘ K

per 100K AT.g 1.7¢-3 | 2.0e-2 | 7.8e-3 | 2.5e-2
per dex Alogg 1.6e-3 | 0.08 | 0.046 | 0.072
per dex Az 3.8e-3 | 0.095 | 0.075 | 0.095

Table 2: Maximum error estimates.

4.5 Comments

Geometrical depth has not been calibrated and a simple linear interpolation is assumed.
Though microturbulence velocity is interpolated by the program, it is constant with optical
depth in standard MARCS. That’s why no further calibration has been explored.

In fact, Kyoss is interpolated in order to derive rhox. rhox is calculated by integrating the
inverse of kappa over tau (see $5.1 of Cowley and Castelli, A&A 387, 595-604, 2002). Be
very careful while using this variable because the error on the interpolation of k is quite
large. Pe, Pg and x behave more smoothly with optical depth in logarithm scale thus giving
better results for the interpolation.

T is the relatively less steep and one of the most linear variable, leading to very low errors
for interpolation. Despite Pg is generally better interpolated than Pe, they both gives large
errors for wide step interpolations. Nevertheless, figures 2 to 13 show that better results
are obtained when interpolates hot stars ( > 5000K) and cool stars, giants (logg < 3.0)
and dwarves, very metal-poor ([F'e/H| < —2.0) and more metal-rich stars separately.

Regarding this study, a suitable grid size for optimal interpolation (error(S) < 5%)
would be:

o T.g step = 500K
e logg step = 0.5
e 7 step = 0.5

The models used to estimate the error define also the validity boundaries of the current
program (see paragraph Warnings and limitations). Any extension of these limits should
not be considered as the error budget might increase dramatically.
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Figure 1: Example of interpolation of the Sun model atmosphere (green) compared to the
actual MARCS one (black). The stellar parameters of the input models are T.;=5500-
6000K, logg=4.0-4.5, and z=[Fe/H|=+0.0-2.0. The difference between the interpolation
and the “correct” Sun model are displayed on the right bottom panels.
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Figure 2: (left panel) Thermal structure for a set of various Teff models. Metallicity is set
to -2.0. (right panels) Thermal structure as a function of effective temperature for different
depth (continuous lines). These values have just been offset to the T, ;=3800K one for a
better appreciation of the relative scale. The empirical law adopted for the interpolation
is plotted with discontinuous lines. The absolute error between both is reported on the
lower panel (note: these values represent the error for an interpolation over a large range
of effective temperature, 3800K to 7000K). Note also that there is no clear dependence on

gravity.
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Figure 3: Interpolation of the logarithm the electronic pressure as a function of effective
temperature (see fig.2 for legend). Note that there is almost no dependence of electronic
pressure vs effective temperature. However, a transition regime appears T ~ 5000K, on
one side what we would qualify as cool stars and on the other side hot stars. Thus, it is
best suited to interpolate models of cool and hot stars separately. On another hand, note
that there is no dependence on gravity.
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Figure 4: Interpolation of the logarithm of the gas pressure as a function of effective tem-
perature (see fig.2 for legend). Same diagnostic as for figure 3: a transition regime appear
at T,yr ~ 5000K. In the case of Pg, the overall law adopted has been optimized only for
the deeper layers (Tross = 0, —2) and only the corresponding errors have been reported in
table2.
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Figure 6: Interpolation of the thermal structure as a function of gravity, for 3 distinct
metallicities (see fig.2 for more detailed legend). Effective temperature has been fixed to
5000K. A transition appear at logg ~ 3.0 and only for very metal-poor stars ([Fe/H] <
-2.0). Because there is no power law able to fit the continuum depth overall the range of
gravities, it is recommended to treat separately metal-poor giants and dwarves for better
results in interpolation. Optimization of « rely only on the other depths. For the same
reason, only the error related to the layer 7r,ss > —2 have been taken into account.
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Figure 7: Interpolation of the logartihm of the electronic pressure as a function of gravity,
for 3 distinct metallicities (see fig.2 for more detailed legend). At the opposite of the thermal
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subsequently very close to 0. However, the relative error remain non negligible because the

overal variation of Pe vs logg is very steep.
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Figure 8: Interpolation ofthe logarithm of the gas pressure as a function of gravity. (same
comments as for figure 7).
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Despite the behavior of x is roughly linear as for Pe and Pg, a small transition regime

appear at log g = 3 as seen for thermal structure vs log g.
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Figure 10: Interpolation of the thermal structure as a function of metallicity for 4 distinct
effective temperatures. As noticed in figures 3, 4 and 5, structure in models at lower
effective (Torf < 5000K’) behave more linearly while they have a more quadratic behavior
for upper temperature. Note as well that concerning cool stars, thermal structure in metal-
rich ([Fe/H] > —2) and very metal-poor stars behave differently. This is explained by the
appearance of molecules affecting strongly the atmosphere such as CO, CN and CH. That’s
why it is recommended to deal separately with both classes for better results.
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Figure 11: Interpolation of the logarithm of the electronic pressure as a function of metal-
licity. Despite the electronic pressure behaves quite smoothly with metallicity, the errors
resulting of the adopted law (discontinuous lines) remain non negligible because the overall
variation is quite important. However, there is a strong dependence of Pe with the effec-
tive temperature. By consequence, the power law adopted is parametrized by the effective
temperature.
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Figure 12: Interpolation of the logarithm of the gas pressure as a function of metallicity

(same comments as for figure 11).
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Figure 13: Interpolation of the logarithm of the Rosseland opacity as a function of metal-
licity (same comments as for figure 11).
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