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ABSTRACT

Aims. We investigate the effect of a geometric inconsistency in the calculation of synthetic spectra of giant stars.
Methods. Spectra computed with model atmospheres calculated in spherical geometry while using the plane-parallel approximation
for line formation calculations (s_p), as well as the fully plane-parallel case (p_p), are compared to the consistently spherical case
(s_s).
Results. We present abundance differences for solar metallicity models with Teff ranging from 4000 to 6500 K and log g from 0.5
to 3.0 [cgs]. The effects are smaller for s_p calculations (−0.1 dex in the worst case) than for the p_p case (up to +0.35 dex for
minority species and at most −0.04 dex for majority species), both with respect to the s_s case. In the s_p case the differences
increase slightly with temperature, while in the p_p case they show a more complex behaviour. In both cases the effects decrease with
increasing log g and increase with equivalent width.
Conclusions. Within the parameter range of F, G and K giants, consistency seems to be less important than using a spherical model
atmosphere. The abundance differences due to sphericity effects presented here can be used for error estimation in abundance studies
relying on plane-parallel modelling.
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1. Introduction

Classical abundance analyses are usually based on model at-
mospheres calculated assuming plane-parallel geometry. This
means that radiative transfer is solved in only one depth vari-
able, neglecting the curvature of the atmosphere. For most stars
this is justified because the extension of the atmosphere is neg-
ligibly small compared to the stellar radius. Extreme cases are
cool giants and supergiants, where geometry effects due to the
thickness of the atmosphere have to be taken into account. They
have been studied accordingly well in the literature.

Sphericity effects on structures, low resolution spectra and
colors of cool (Teff ≤ 4000 K) giants and supergiants have been
studied for example by Plez et al. (1992). They showed that for
one of their hottest models with (Teff, log g1, mass)= (3800 K,
1.0, 1 M�), the changes in temperature structure when releasing
the plane-parallel approximation are relatively small (about 35 K
at log τRoss = −4, the atmospheric extension being about 4%).
Plez (1990) discussed effects of atmospheric extension on the
determination of effective temperature, surface gravity and abun-
dances of cool supergiants (Teff ≤ 4500 K). He noted that the
effects are not linear with temperature and gravity.

Spherical model atmospheres for a large range of giant star
temperatures have been presented by Hauschildt et al. (1999).
They also presented changes in spectral flux with respect to
plane-parallel models. For a model with (Teff, log g)= (5600 K,
0.0) they show for example that the change in central depth of
individual spectral lines can be up to 15%.

F to K giants are commonly used to study abundances of
stellar systems, mainly due to their intrinsic brightness. With re-
spect to atmosphere geometry they represent borderline cases
and are therefore usually analysed using plane-parallel radiative

1 log g values are given in cgs units throughout the paper.

transfer. Many examples for recent large scale abundance analy-
ses of giant stars can be found in the literature. Cepheid stars at
various pulsation phases were studied by Luck & Andrievsky
(2004). These stars are used to determine the Galactic abun-
dance gradient (Andrievsky et al. 2004). Another example is the
analysis of probable giant star planet hosts (Takeda et al. 2005).
Furthermore, red giants are frequently contained in samples of
Galactic halo stars, which are used to study Galactic chemi-
cal evolution and nucleosynthesis by means of classical abun-
dance analysis. Earlier examples are the large scale high resolu-
tion abundance studies of metal-poor stars by McWilliam et al.
(1995, 31 stars with log g <∼ 2.5) and Ryan et al. (1996, 7 stars
with log g <∼ 2.0), whose results have been used by Travaglio
et al. (2001) in their study of the chemical evolution of the
Galactic halo. More recently, Simmerer et al. (2004) determined
abundances of Fe, La and Eu for stars over a wide range of metal-
licities. A substantial fraction of those are giant stars in the log g
range of 0.5 to 2.0, all with [Fe/H] <∼ −1 dex.

In recent years, grids of model atmospheres calculated in
spherical geometry have become available to an increasing
extent (e.g. Gustafsson et al. 2003; Hauschildt et al. 1999).
However, line formation will probably continue to be computed
in plane-parallel geometry in abundance analysis procedures. In
this paper, we investigate the effect of such an inconsistency on
synthetic spectra and abundances of giant stars. We then com-
pare to the effects due to using a consistent, but plane-parallel
combination of model atmosphere and spectrum synthesis.

Figure 1 shows the atmospheric extension of spherical
MARCS models (see Sect. 2) with ξt = 2 km s−1, solar abun-
dances and various temperatures and gravities as a function of
bolometric magnitude. Here, the extension is defined as the dif-
ference in radius at the points in the atmosphere where τRoss =
10−5 and 1 relative to the radius at τRoss = 1. The bolometric
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Fig. 1. Atmospheric extension ( r(τRoss=10−5)
r(τRoss=1) −1) of spherical models with

ξt = 2 km s−1 and solar abundances as a function of bolometric mag-
nitude for M = 1, 2, and 5 M� as indicated by increasing symbol
size. Models with equal log g are joined by lines, except where cer-
tain Teff values are missing, and are labelled with their log g value.
Model temperatures range from 4000 to 7000 K in steps of 250 K for
M = 1 M� and 1000 K for M = 2 and 5 M�, increasing from right to
left along lines.

magnitude has been calculated from the model fluxes on the
scale defined by IAU Commission 36 (Andersen 1999). This
figure can be directly compared to Fig. 1 of Plez et al. (1992).
It shows that atmospheric extensions increase relatively rapidly
with effective temperature for log g < 2. One can also see small
local maxima at about 5250 K, similar to the ones at 3200 K
found by Plez et al. (1992). These features in the shape of lines
of equal log g can probably be attributed to a decrease in par-
tial pressure gradient of diatomic molecules such as CO or CN.
The same plot for models with abundances corresponding to halo
stars with [Fe/H] = −2 dex looks very similar, except that the
aforementioned maxima are not present. This is in accordance
with the low metallicity where molecules are not as important.

Figure 2 shows how the temperature structures of spherical
models with solar abundances in the parameter range investi-
gated here differ from plane-parallel ones. The dilution of the
radiation field in spherical geometry causes the spherical model
to be cooler than the plane-parallel one above an optical depth
of ≈1, and the temperature difference increases outwards.

The differences seen for the hotter models at large optical
depths can be attributed to numerical effects in the linearized
mixing length equations. For these models, the lower boundary
of the convection zone is very close to the lower boundary of
the atmosphere. Note that these differences are not visible in the
spectra and that the differences are less than 1% (see temperature
scale for the spherical (Teff, log g)= (6500 K, 1.5) model at the
top axis of the figure).

In the outermost layers, the temperature differences for mod-
els of equal log g and different Teff show a complex behaviour.
In certain cases, models with larger extension show less sur-
face cooling with respect to the plane-parallel counterpart than
less extended models, for example the models with log g = 1.5
shown in Fig. 2. This is very likely due to the effect of the change
in temperature structure on molecular absorption. An inspection
of the grid models shows that the changes in partial pressures
of molecules in the outermost layers, when going from plane-
parallel to spherical geometry, do not simply scale with effec-
tive temperature. This applies in particular to molecules contain-
ing carbon, as well as TiO and SiS. Since molecular absorption
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Fig. 2. Differences between spherical and plane-parallel model temper-
atures (Ts−Tp) as a function of Rosseland optical depth of models with
ξt = 2 km s−1, solar abundances and M = 1 M�. Solid (dashed) lines
show Teff = 5000 K (6500 K) models and line width increases with
log g. The scale on the top horizontal axis gives the temperature of the
spherical (Teff , log g)= (6500 K, 1.5) model in units of 103 K.

can either cool or heat the outer layers (Gustafsson & Olander
1979), the net effect might well be more cooling in a less ex-
tended model as compared to a more extended model.

2. Models, spectra and equivalent widths

We calculated spectra with two different versions of the spec-
trum synthesis code used in Uppsala (plane-parallel – p – and
spherical – s) for representative model parameters. We chose so-
lar metallicity for all models and masses of 1, 2 and 5 M� for
s models. The microturbulence parameter ξt was set to 2 and
5 km s−1. Teff was varied between 4000 and 6500 K in steps of
500 K for 1 M� and 1000 K for 2 and 5 M�. The log g values
ranged from 0.5 to 3.0 in steps of 0.5 for 1 M� and were set
to 1.0, 2.0 and 3.0 for 2 and 5 M�. For 1 M�, this corresponds to
radii at τRoss = 1 of ≈5 R� (log g = 3.0), ≈15 R� (log g = 2.0)
and ≈90 R� (log g = 0.5); for 2 and 5 M� and log g = 2.0,
the radii are ≈20 and 40 R�, respectively. For logg = 0.5, only
models with Teff ≤ 5000 K were available. Normalized syn-
thetic spectra were calculated for wavelengths between 5400 and
7200 Å using atomic line data from VALD (Kupka et al. 1999)
and MARCS model structures (Gustafsson et al. 2003)2 as input.
For a discussion of the method for solving the radiative transfer
equations in the atmospheric models and spectrum synthesis see
Plez et al. (1992) and Nordlund (1984). We regard three different
combinations of model atmosphere (atm) and spectrum synthe-
sis (syn) geometries: atm_syn = s_s (consistently spherical), s_p
(inconsistent), p_p (consistently plane-parallel).

As a next step, we selected all lines in this spectral region
which were found to be not blended by more than 30% by neigh-
boring lines. This line selection was done for the (5000 K, 0.5),
ξt = 2 and 5 km s−1, 1 M� s_s models. Equivalent widths were
then calculated for these lines for the s_s models with an equiv-
alent width / abundance fit version of the spectrum synthesis
code. Finally, abundance differences were obtained for s_p and
p_p models by fitting the calculated equivalent widths to the
s_s ones. Table 1 lists all species contained in the line list and
the number of lines selected for each of them, as well as the

2 http://marcs.astro.uu.se
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Table 1. Number of lines selected for each species in the geometrically
consistent (s_s) synthetic spectrum with (Teff , log g, ξt)= (5000 K, 0.5,
2 km s−1) with equivalent widths between 5 and 250 mÅ, as well as
fraction of the element in the given ionization stage (in %, averaged
over −1.0 ≤ log τRoss ≤ −0.1).

Species n % Species n % Species n %

Al I 9 0.1 Gd II 14 99.8 Sc II 15 99.9
C I 21 100.0 La II 33 98.6 Si I 173 5.2
Ca I 28 0.01 Mg I 8 0.5 Si II 4 94.8
Ce II 33 98.3 Mn I 17 0.5 Sm II 104 98.3
Co I 76 1.8 Mn II 3 99.5 Ti I 115 0.1
Cr I 41 0.1 Mo I 3 0.3 Ti II 34 99.9
Cr II 22 99.9 Nd II 109 96.7 V I 57 0.1
Dy II 5 99.3 Ni I 124 2.6 V II 21 99.9
Er II 5 99.6 O I 4 100.0 Y II 10 99.8
Eu II 7 98.6 Pr II 73 94.8 Zr I 6 0.1
Fe I 562 1.0 S I 21 91.1 Zr II 7 99.9
Fe II 68 99.0 Sc I 8 0.03

fraction of the element in the given ionization stage, averaged
over −1.0 ≤ log τRoss ≤ −0.1.

3. Results

We take the consistent s_s spectra as a reference and present a
comparison to the spectra with the two other geometry combi-
nations. Figure 3 illustrates the geometry effects on line profiles.
One can see that mainly the line centers are affected, which can
be ascribed to the way the model atmosphere structure changes
(see Fig. 2). The following two subsections summarize the ef-
fects on line abundances for 1 M� models. We restrict the inves-
tigation to lines with equivalent widths between 5 and 250 mÅ.

3.1. Effects of inconsistent spectrum synthesis

Figure 4 shows the differences between s_p and s_s abundances
versus s_s equivalent widths (W) for Fe I lines (upper plot) and
Fe II lines (lower plot). Models with Teff = 5000 K, low mi-
croturbulence and various gravities are shown. Apart from the
expected increase towards lower gravities, one notices that the
effect is on average about 0.01 dex smaller for Fe II than for
Fe I, for lines with W <∼ 50 mÅ and log g ≤ 1. The same dif-
ference between ionization stages is seen for all other elements
with at least 10 lines of each of the two ionization stages (Cr,
Ti, V). The differences are slightly larger for higher Teffs. This is
illustrated in Fig. 5, which shows the differences for Fe lines for
ξt = 2 km s−1, log g = 1.0 and several Teff values, averaged over
bins of 25 mÅ. The trends are weaker for ξt = 5 km s−1 and dif-
ferent for different species. The differences are in general larger
for the lower ξt value, where line saturation sets in at smaller W.
Neutral species show the same differences as Fe I, except for
C I, S I and Si I, for which the effect is on average smaller by
0.01 dex for the lowest log g values and weak lines. Singly ion-
ized species show the same differences as Fe II, except for weak
lines of rare earth elements for log g = 0.5. For Ce II, the effect
is on average smaller by 0.01 dex, and for Gd II, Pr II, Nd II,
La II, Sm II, the effect is on average larger by 0.01 dex.

3.2. Effects of consistent plane-parallel spectrum synthesis

Figure 6 shows the differences between p_p and s_s abundances
versus s_s equivalent widths for Fe I and Fe II lines, for the mod-
els with Teff = 5000 K, low microturbulence and various gravi-
ties. In this case, neutral and ionized Fe lines show an opposite
effect, which is also seen for all other elements. The dependence
of abundance differences on Teff is more complex than in the
previous case (Sect. 3.1), as shown Fig. 4. For Fe I lines, the
differences are essentially zero at Teff = 4000 K, increase up to
Teff = 5000 K, and decrease slightly towards higher Teff. For
Fe II lines, the differences decrease with increasing Teff over the
whole range.

Again, most neutral species behave similarly to Fe I, with the
following exceptions:

– C I, O I and S I (all predominantly neutral): the effect has
opposite sign to that of Fe I (similar to Fe II);

– Si I: the effect is less than half that of Fe I;
– Ti I and V I: the effect is on average larger than for Fe I.

Most singly ionized species show the same differences as Fe II.
Exceptions are again the rare earth elements, but also Sc and Ti:

– Ce II, La II, Nd II, Sc II: the effect is smaller than for Fe II
and changes sign for large equivalent widths;

– Sm II, Ti II: the effect is on average 0.01 dex smaller than for
Fe II for log g ≤ 1.0.

3.3. Mass dependence

For models with (Teff, log g, ξt)= (5000 K, 1.0, 2 km s−1) and a
mass of 2 M�, the abundance differences are smaller by 0.005
(weak lines) to 0.01 dex (strong lines) compared to 1 M� mod-
els. For a model mass of 5 M�, they are smaller by 0.01 (weak
lines and strong lines of majority species in the p_p case) to 0.03
(strong lines in the s_p case) to 0.05 dex (strong lines of minor-
ity species in the p_p case). In general, higher masses result in
smaller effects and the dependence on mass is proportional to
abundance difference. As can be seen in Fig. 1, the extensions
in 5 M�, log g = 1.0 models are approximately the same as in
1 M�, log g = 1.5 models. We therefore expect that an increase
in mass from 1 to 5 M� has the same effect as increasing log g
by 0.5. This is confirmed by the calculations.

4. Discussion

4.1. Trends of effects with line data

It seems that the temperature structure used as input for the
spectrum synthesis calculation is more important than the ge-
ometry used in such a code. Since the temperature differences
decrease with depth in the atmosphere, spectral lines formed at
different depths will be affected differently. We calculated aver-
age formation depths 〈τRoss〉 of the line centers for a few species
which show different effects (Sect. 3) for the s model with (Teff,
log g, ξt)= (5000 K, 0.5, 2 km s−1). The distributions (relative
frequency of lines forming at different log〈τRoss〉) are rather sim-
ilar, except for those of C I, S I, Si I and Ti I. They show a some-
what higher and narrower peak at log〈τRoss〉 ≈ −0.3 than that
of Fe I. This will introduce a small species to species difference
in the geometry effects.

The largest part of the differential effect can however be at-
tributed to the different distributions of excitation energies over
lines of the same species (see Sect. 4.2.3 below). Figures 8 and 9
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Fig. 3. Comparison of s_s (thick line), s_p
(thin line) and p_p (dotted line) spectra for (Teff ,
log g, ξt, M)= (5000 K, 0.5, 2 km s−1, 1 M�).
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Fig. 5. Abundance differences for inconsistent
and consistently spherical equivalent widths of
Fe I lines (upper plot) and Fe II lines (lower plot)
as a function of s_s equivalent widths for mod-
els with a mass of 1 M� with ξt = 2 km s−1,
log g = 1.0, and different Teff values as indicated
by different symbols. The differences have been
averaged over bins of 25 mÅ, with bin centers
offset for clarity and error bars showing the stan-
dard deviations.

show the correlations between excitation potential and abun-
dance difference (for ionized species) as well as between the
difference of ionization and excitation potentials and abundance
difference (for neutral species).

4.2. Analytical estimation of effects

As giant stars with exactly plane-parallel atmospheres do not ex-
ist in nature, it will be difficult to verify these results with ob-
servations. A possible experiment would be to perform an abun-
dance analysis of a sample of binary stars, where one component
is a dwarf star close to the zero-age main sequence and the sec-
ond components are giant stars of varying sizes. When both stars
are analysed with a plane-parallel spectrum/atmosphere code,
any difference in abundance could be attributed to sphericity ef-
fects. However, this requires that all other physical phenomena,
like convection, deviation from LTE and scattering, are mod-
elled correctly. Here, in order to conduct a “sanity check” on the

results, we try to reproduce them using an analytical solution
to the problem. This will also help to get a better understand-
ing for the cause of the effects. Such solutions require invoking
a few more approximations than used in the numerical model.
We follow Chandrasekhar (1934), who derived a solution to the
equation of radiative transfer (in polar coordinates), including
the term containing the dependence of intensity I on the angle of
inclination to vertical θ

cos θ
∂I
∂r
− sin θ

r
∂I
∂θ
= κρ(S − I), (1)

where r is the distance from the stellar center (i.e., the ra-
dius), κ is the opacity, ρ the density and S the source function.
In local thermodynamic equilibrium (LTE), S is given by the
Planck function B. Further, if the mean intensity J, the flux πF,
and the radiation pressure integral K are defined as the ze-
roth, first and second moment of the intensity, respectively, the
first Eddington approximation 3K = J is used, along with the
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Fig. 6. Differences between consistently plane-
parallel and spherical abundances versus s_s
equivalent widths of Fe I lines (upper plot) and
Fe II lines (lower plot) for models with a mass
of 1 M� with ξt = 2 km s−1, Teff = 5000 K,
and different log g values as indicated by differ-
ent symbols.

condition that at the outer boundary of the star F = 2J (second
Eddington approximation). Radiative equilibrium is expressed
by Fr2 =constant. The dependence of B on optical depth τ
is then

B =
1
2

FR

(
1 +

3
2

∫ τ

0

R2

r2
dτ

)
, (2)

where πFR is the flux at r = R, which occurs at τ = 0. Note that
this definition of R is different from the radii given in Sect. 2.
If τRoss = 10−5 is taken as an approximation for τ = 0, R is
the radius at τRoss = 1 enlarged by the corresponding extension
(Fig. 1). We adopt this approach in the following.

The same approximations as above are subsequently used
when considering the formation of absorption lines. Now, all ra-
diation quantities are indexed with frequency ν to indicate that
they are defined in the range ν to ν + dν in continuum regions,
and additional primes indicate quantities inside spectral lines.

4.2.1. The s_s case

Chandrasekhar (1934) assumed a power law variation of τν
with r

τν = crm, (3)

where c and m are constants and m < 0. Furthermore, R was
assumed to be sufficiently large so that

1
R2
� 3

2

∫ τν

0

dτν
r2
· (4)

Assuming small |m|, he derived a surprisingly simple expression
for the dependence of normalized line flux on line strength, the
latter being measured by the ratio of the coefficients of line to
continuous absorption η,

F′ν
Fν
=

1
1 + η

· (5)
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Fig. 7. Differences between consistently plane-
parallel and spherical abundances versus s_s
equivalent widths of Fe I lines (upper plot) and
Fe II lines (lower plot) for models with a mass of
1 M� with ξt = 2 km s−1, log g = 1.0, and differ-
ent Teff values as indicated by different symbols.
The differences have been averaged over bins of
25 mÅ, with bin centers offset for clarity and er-
ror bars showing the standard deviations.

Equation (5) presumably describes the s_s case and can be di-
rectly compared to a similar expression derived by Eddington
(1929) for the plane-parallel case

F′ν
Fν
=

1 + 2
3 q

1 + η + 2
3 q
· (6)

Here, q2 = 3(1 + η)(1 + εη) includes a parameter ε measuring
the importance of collisions (i.e. ε = 1 in LTE). Comparing
the two expressions, it becomes clear that Eq. (5) by far over-
estimates the effect of sphericity, since the normalized line flux
decreases much more rapidly with line strength than in Eq. (6),
and it approaches zero for large η, whereas in Eq. (6), the lim-
iting value is 1/(1 +

√
3/2) = 0.54. Thus, Eq. (5) cannot be

used to estimate the effects for the parameter range studied here.
An inspection of the calculated models shows that neither of
the two assumptions used by Chandrasekhar (1934) are fulfilled.
We determine values of m and c by fitting the function given
by Eq. (3) to the calculated values of τ5000 Å and r in the range

−5 ≤ log τ5000 Å ≤ 0. The ratio of 1
R2 and the right hand side

of Eq. (4) is then between 0.5 to 0.7 when using τ5000 Å = 1
as upper integration limit and correspondingly larger for smaller
upper integration limits. Furthermore, the values of |m| are rather
large (between 100 and 2000).

4.2.2. The s_p case

For the s_p case we start from a slightly different expression
for the normalized line flux, derived for the case where the
continuum source function varies linearly with optical depth
(S ν = Bν = a + bτν):

F′ν
Fν
=

b + aq

b + a
√

3
· 1 + 2

3

√
3

1 + η + 2
3 q
, (7)

(see Eddington 1929, his Eq. (22)).
The effect of using a spherical model atmosphere compared

to a plane-parallel one can then be estimated by comparing
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Fig. 8. Abundance differences s_p − s_s ver-
sus difference of ionization and excitation po-
tentials (neutral species, upper plot) and ver-
sus excitation potential (singly ionized species,
lower plot).

corresponding numerical values of the ratio b/a. In LTE, S ν =
Bν = Cν/(ex − 1), where Cν is constant for a given frequency
and x = hν/kT , T being the temperature and h and k the Planck
and Boltzmann constants, respectively. The derivative of the log-
arithm of the Source function with respect to τν is then

1
S ν

dS ν
dτν
=

xex

ex − 1
1
T

dT
dτν
· (8)

For a grey atmosphere, where the continuous absorption is inde-
pendent of ν, the temperature structure is given by T 4 ∝ (1+ 3

2τ)
in the plane-parallel case. Inserting in Eq. (8) together with the
linear source function law, we derive b/a = 3

8 x at τ = 0. This
expression only holds for x >∼ 3, for which ex/(ex − 1) can be
approximated by 1. Note that the lowest value of x occurring
in the atmospheric models studied here is about 3 (for 7200 Å
and the hottest models at τRoss = 1). In the spherical case,

using Eq. (2), the grey temperature structure can be written as
T 4 ∝

(
1 + 3

2

∫ τ
0

R2

r2 dτ
)
. We use the same law for τ(r) as above

(Eq. (3)) to evaluate the integral in the temperature structure
equation and further the derivative in Eq. (8). For large values
of |m|, this leads to b/a = 3

8 xc2/mR2. In order to estimate nu-
merical values of the discriminating factor c2/mR2, we resort to
determining them from the atmospheric models: for log g val-
ues of 0.5, 1.5 and 2.5, typical values of the factor are 1.2, 1.1,
and 1.02, respectively. The resulting variation in normalized line
flux is shown in Fig. 10 as a function of line strength η, for a
value of x = 4 (corresponding to e.g. a wavelength of 6000 Å
at a temperature of 6000 K). Also shown is the relation for the
p_p case (Eq. (6), which derives from Eq. (7) when x = 4).
Comparing this figure to Fig. 3 shows that the analytic estima-
tion of the sphericity effect agrees fairly well with the modelling
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Fig. 9. Abundance differences p_p − s_s ver-
sus difference of ionization and excitation po-
tentials (neutral species, upper plot) and ver-
sus excitation potential (singly ionized species,
lower plot). The lines in the lower plot indicate
the variation of abundance difference as esti-
mated from the difference in model temperature
only (see text, Sect. 4.2.3) at log τRoss = −0.5
(dashed) and log τRoss = −0.1 (solid), for dif-
ferent log g values as indicated by different line
width.

outcome in this case, at least for lines of species in the minority
ionization stage.

The results of this discussion suggest another observational
test. When central depths of saturated lines are measured in giant
stars of different radii, they are relatively unaffected by star-to-
star abundance differences. Those lines having cores that form
close to LTE should then be deeper for the more extended stars
than for the less extended stars by the amount predicted.

4.2.3. Dependence on excitation potential

The variation of the abundance differences with excitation po-
tential (χ) can under certain circumstances be directly estimated
from model temperature differences. We use the assumption that
for a weak line of a given species, changes in logarithmic abun-
dance are equivalent to changes in 5040/T · χ for a line from the
majority species (see e.g. Gray 1992, Chap. 14). The tempera-
ture difference in the region of log τRoss between −0.1 and −0.5,

where most of the lines form, is about 30, 15 and 5 K for models
with log g = 0.5, 1.5 and 2.5, respectively. The corresponding
variations of abundance difference with χ are shown in Fig. 9
(lower plot) as lines and are comparable to the outcome of the
detailed models. For lines of species in the minority ionization
stage (all neutral elements except C I, O I and S I, see Table 1),
the differences will also depend on the ionization potential.

4.3. Implications for abundance analysis

The systematically different effects on lines of different ioniza-
tion stages of the same element imply an effect on ionization
equilibrium, which is sometimes used to infer gravities of pro-
gram stars. Just as an example, we take the star YZ Sgr from
Luck & Andrievsky (2004). At phase 0.249 it has a tempera-
ture of 5500 K, log g = 1.4 and ξt = 3.7 km s−1. The average
abundance difference (p_p − s_s) for Fe I lines used by Luck
& Andrievsky (2004), which are also in our line list, amounts
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Fig. 10. Normalized flux as a function of line strength showing the s_p
effect as estimated according to Eq. (7), where b/a = 3

8 xc2/mR2, for x =
4 and three different factors c2/mR2 determined from the atmospheric
models for different log g values.

to +0.03 ± 0.01 dex (for the 5500 K/1.5 model with ξt = 2
or 5 km s−1). For Fe II, the difference is −0.010 ± 0.003 dex.
The same difference is obtained by decreasing log g in the s_s
models by about 0.1 dex or increasing the temperature by about
40 K. These values are equal to the formal uncertainty given
for this star. In the Takeda et al. (2005) sample, stars at 5000 K
have log g ≥ 2.5. If we take as an example the star HD 192944
(ξt = 1.4 km s−1), the abundance differences (p_p− s_s) are only
+0.009 ± 0.006 dex and −0.008 ± 0.004 dex for Fe I and Fe II,
respectively. They can safely be ignored until abundance anal-
yses reach significantly higher internal accuracies compared to
today. Abundance differences for individual lines and/or stellar
parameters can be obtained on request from the authors.

5. Conclusions

1. We recommend the use of spherical model atmospheres in
abundance analyses for log g <∼ 2 and 4000 K ≤ Teff ≤
6500 K. Thus one can avoid both systematic errors on abun-
dances and differential effects, which can lead to additional
uncertainties in stellar parameters. Alternatively, restricting
the analysis to weak lines (W <∼ 100 mÅ) and/or major-
ity species will minimize the uncertainties on abundances
caused by assuming a plane-parallel geometry.

2. Geometry has a smaller effect on line formation than on
model atmosphere structure. It is more important to use a
spherical model atmosphere than to be consistent when cal-
culating the spectral lines, i.e. an s_p calculation is better
than p_p if tools for s_s calculations are not available.

Note, however, that this holds only for the range of param-
eters studied here. For a model of a cool giant with (Teff,
log g)= (2800 K, –0.6) for example, Aringer (2005) showed
that an inconsistent treatment of geometry (s_p) results in
larger differences in spectral line depth than for a fully plane-
parallel calculation.

3. For both cases (s_p and p_p), the results presented in Sect. 3
are intended to provide a guide to the estimation of sys-
tematic errors in abundance analyses due to geometry ef-
fects. For s_p calculations, the largest differences encoun-
tered with respect to the s_s case are −0.1 dex. In the p_p
case, differences are up to +0.35 dex for minority species
and at most −0.04 dex for majority species. The abundance
studies of halo stars mentioned in Sect. 1 contain stars in the
log g range where sphericity effects are important. Although
the abundance difference values given in Sect. 3 are based on
solar abundance models, effects are expected to be similar in
low-metallicity models, since the atmospheric extensions are
similar.
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